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We investigate a simple model of crystalline helical polymers which includes interchain interactions and 
the effects of non-zero temperatures. The object is to determine the conditions under which incommensurate 
phases are possible at high temperatures. We find a fundamental difference between lattices of two-fold 
symmetry and those of the higher symmetry typified by a hexagonal lattice. For helices of a preferred 
handedness, only two-fold symmetry prevents the formation of incommensurate structures. In higher 
symmetries incommensurate helices are almost always formed at sufficiently high temperatures. 
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I N T R O D U C T I O N  

In this paper  we study the effect ofinterchain interactions 
on the crystal structure of helical polymers at non-zero 
temperatures. The question that we at tempt to answer 
concerns the relative effectiveness of intrachain and 
interchain interactions in determining the way in which 
a helical chain molecule responds to the symmetry of its 
crystalline environment. 

The central concept in this study is the commensur- 
ability of the chain in its crystal lattice. The helix is said 
to be commensurate  if the orientation of the nth monomer  
in the chain is identical with that of the ( n + m ) t h  
monomer ,  with m a comparatively small integer in the 
context of the number  of monomers  contained in the 
length of a single chain spanning the lamellar width. This 
is illustrated schematically in Figure I, in which the 
orientation of a monomer  is represented by the stick and 
ball projecting from the chain axis. The existence of a 
crystal lattice defines a set of energetically preferred 
directions. In Figure l a these interactions are dominant 
and the energy of the system is minimized in a 
commensurate  structure. The necessity for the chain to 
form such a structure has been referred to 1 as the 
'equivalence principle'. 

In the absence of interchain interactions, however, 
there is in general no reason why a helical chain should 
be commensurate.  The angle ~ between two orientations 
0, and 0, + i of successive monomers  in a direction normal 
to the chain axis will be determined by a complicated 
sum of various interatomic forces. There is no necessity 
for ~ to be a simple rational fraction of 27z unless the 
molecule itself has some particular symmetry.  Examina- 
tion of the intramolecular forces in isotactic polypropyl- 
ene, for example, shows that a minimum in conforma- 
tional energy is found 2 at an angle ct which is a few 
degrees larger than the value 2~/3 characteristic of a 31 

helix. An isolated chain of isotactic polypropylene thus 
forms an incommensurate helix of the type shown in 
Figure lb. 

When the interchain potential is added to the 
Hamil tonian of an array of independent incommensurate 
helices at zero temperature there is a natural tendency 
for the pitch of the helix to change to a commensurate 
value. The cost in energy to change • by an amount  A~ 
will be of the order (A~) 2, and for a very long chain it 
will require only a small A~ to reach some commensurate 
structure, with a corresponding non-vanishing lowering 
of the interchain energy. In terms of our practical 
definition of commensurability, in which to be observable 
the period of the commensurate structure must be much 
less than the lamellar thickness and hence have m ~< 10, 
it is still probable that a lowering of the energy can be 
achieved. 

While these considerations based on energy alone are 
persuasive that commensurate helices are the most stable 

Figure 1 In the commensurate helix (a) the orientation of every third 
monomer is identical, while in the incommensurate structure (b), each 
orientation is unique 
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structures at low temperatures 3, they do not necessarily 
indicate that such structures will always be experiment- 
ally observed. At elevated temperatures, the entropic 
contribution to the free energy may dominate, and in 
consequence the resulting helical structure may have a 
large degree of disorder. The time constant for transition 
from an incommensurate high-temperature phase may 
also be very long, rendering the commensurate phase 
inaccessible. It is consequently of interest to examine the 
first onset of cooperative behaviour as a helical crystalline 
polymer is cooled. 

Because no non-trivial statistical mechanics problem 
in three dimensions has yet been exactly solved, it is 
difficult to make precise statements regarding phase 
transitions in assemblies of helical polymers. We can, 
however, solve many one-dimensional problems with 
arbitrarily high precision. The approach we take in this 
paper is to examine the tendency to ordering exhibited 
by an isolated helical chain. That is to say, we study the 
effect, on a chain whose natural structure is incommen- 
surate, of a crystalline environment whose natural 
tendency is to produce a commensurate helix. The 
response of the chain is calculated in terms of a 
susceptibility to ordering induced by a helically varying 
effective field. We then examine under what conditions 
this ordering transition on cooling gives rise to a 
commensurate helix. This approach is limited in its 
application to the onset of helical order in an essentially 
disordered system. The system may, in addition to this 
initial ordering, exhibit transitions between different 
ordered phases as the temperature is reduced further. 
Although we cannot in general make quantitative 
predictions about the existence or nature of such 
transitions, there are certain cases in which we may 
predict general features of the phase diagram. 

The statistical mechanics formalism necessary to treat 
polymeric chains at non-zero temperatures is rather 
complex, and imposes some limitations on models that 
can be conveniently studied. Many helical polymers are 
synthesized from monomers of sufficient symmetry that 
both left-handed and right-handed helices are possible, 
with defects likely at which the handedness of the chain 
is reversed. The construction of useful models of such 
systems requires the incorporation not only of nearest 
neighbour intrachain potentials but also of next-nearest 
neighbour interactions. This greatly complicates the 
computational task of evaluating the thermodynamic 
properties. In order to avoid this difficulty we consider 
a model with a specific preferred handedness, which can 
consequently be chosen to contain forces only between 
nearest neighbouring monomers. This model is then most 
directly a description of molecules like the poly(ct-amino 
acids), in which a preferred handedness exists. We do, 
however, expect the conclusions to apply qualitatively 
also to such molecules as poly(tetrafluoroethylene) 
(PTFE), in which there is no preferred handedness. 
Preliminary calculations using a formalism which 
includes next-nearest neighbour interactions support this 
conjecture. 

The approach we take begins with a simple model for 
the intrachain potential in a helical molecule having a 
preferred direction of handedness. We then use a transfer 
integral formalism to evaluate the temperature-depen- 
dent response of such a chain to the mean-field potential 
due to neighbouring chains. We identify the wavenumber 
at which a divergence occurs in the response of the 

ray/or 

molecule to the interchain potentials of neighbouring 
chains as the wavenumber characterizing the highest 
temperature cooperatively ordered crystal structure. 

We stress that although our working definition of a 
commensurate structure in a helical polymer may seem 
imprecise, the few cases where careful measurements have 
been made conform to the idea that a distinction can 
be made. Measurements of electron diffraction in PTFE 
at temperatures below 19°C, for example, have been 
interpreted 4 as incompatible with a 15 7 helix, which 
would be commensurate within our terminology, and 
describable either as incommensurate or a 948439 helix, 
which are equivalent descriptions within our definition. 
Examples in materials other than polymers include 
magnetic systems such as CeSb 5'6 and systems with 
structural transitions 7-11, such as tetrathiofulvalene 
tetracyanoquinodimethane, K2SeO4 and BaMnF4. In 
these latter materials it has also been shown that the 
complex phase diagrams can be understood in terms of 
very simple mean-field models 12-14. Thus, we believe that 
the effects addressed in the present paper are observable 
and can be investigated in terms of the simple models 
described here. 

THE MODEL 

We represent an isolated chain by a set of directed 
monomers pointing in the xy-plane and equidistantly 
spaced along the z-axis, which we take to be the direction 
of the chain axis. For example, in the case of PTFE these 
can be thought of as pointing in the direction of the 
bisectors of the fluorine-carbon bonds on each monomer. 
The angle that the ith directed monomer on thej th chain 
makes with a fixed direction (taken to be the x-axis) is 
denoted 01j and is located at position r~j. For brevity, we 
will sometimes use the notation of a classical XY-spin 
system, in which Sx(r~j) = cos 0 u and Sr(r~j ) = sin Oij. 

The part of the Hamiltonian that represents the 
intrachain interactions of the single chain is then taken as: 

Ho = - JH ~ c o s ( 0 1 , j -  0 i -  ~,j - a) J,, > 0 
i , j  

(1) 

The ground state of the Hamiltonian H o is then a 
(right-handed) helix with pitch ~. For the case of PTFE, 
for example, we take ~ g 164 °. 

We now turn to the interchain interactions. The 
formalism which we will use is one in which the interchain 
interactions are treated in the mean-field approximation, 
but the intrachain interactions (and hence the intrachain 
correlations) are treated more precisely. The justification 
for this lies in the strength of the intrachain covalent 
forces in comparison with the weaker van der Waals 
interchain interactions. We write the interchain potential 
energy in such a way as to display the two most important 
components, H~ and H2. The first of these represents the 
interaction of a monomer with the average of its 
crystalline environment. This term has the symmetry of 
the lattice, and can be treated as an external field in an 
effective single-chain Hamiltonian. The second compo- 
nent includes the effect of the detailed orientations of 
surrounding monomers, and is thus the term responsible 
for interchain correlations. 

We identify these two components by first writing the 
potential energy VT as a sum of pair potentials within a 
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In the absence of external fields, this Hamiltonian then 
contains three energy scales, the interchain coupling J±, 
the intrachain coupling JII and the crystal field coupling 
?. We will assume that ?>>JII >>J±" This is not 
unreasonable for the case of polymers in which the crystal 
field arises from steric hindrance, for which the energy 
barrier becomes extremely high. On the other hand, the 
intrachain coupling represents the energy of torsional 
rotations around the bonds of the chain backbone. The 
scale of this energy can be much lower than that of steric 
hindrance, and is typically of the order of a few kilojoules 
per mole. The interchain coupling H2, finally, can arise 
from weaker, long-range interactions such as van der 
Waals interactions or dipole interactions. This separation 
of the energy scales validates the use of the mean-field 
approximation in this paper. 

Figure 2 The directed monomer on the centre chain at an angle 0 
from the x-axis and a distance a from the chain axis interacts with the 
n monomers on adjacent chains. The lattice spacing is l, and the crystal 
has hexagonal symmetry in the xy-plane 

plane perpendicular to the chain axis, so that: 

VT= ~ V(r~) (2) 
m=l  

In the geometry illustrated in Figure 2, an atom is 
displaced a distance a at an angle 0 from a lattice site, 
and its n nearest neighbours are similarly displaced at 
angles 0,.. The interatomic distances are given by the 
expression: 

2 / 2  r,, + 2a 2 - 2a 2 cos(0 -- Om) 

+ 2al[cos(O= -- 2mTr/n) -- cos(0-- 2mn/n)] (3) 

An expansion of V T in powers of a yields a term 
proportional to cos (0-8 , . )  in first order, and this we 
identify as/42. Averaging over O= and summing over m 
removes the P-dependence of VT in all terms up to the 
term of nth order, where we find a term proportional to 
cos nO. This is the term Hz, which has the symmetry of 
the lattice. We now write the potential energy as 
V T = H~ + H 2, with 

H 1 = ?~ COs(nOij ) (4) 
ij 

and 

/-/2 = - J± ~ c o s ( 0 ~ -  Oij,) (5) 
i 

<jr,> 

Here (jj'> means that the summation extends over 
nearest-neighbour chains j and j'. 

Finally, we also allow for the application of an external 
field F(ru) which couples linearly to the monomers. This 
field need not be a physically realizable field, but is a 
mathematical device for calculating correlation functions. 
The total Hamiltonian is thus: 

H = - J I I  2 c°s (Oi ,J  - Oi -  1,j - -  ~)  
ij 

- J± ~ [cos Oij cos 0 o, + sin Oij sin Oij,] 
i 

<jr,> 

+ ? ~ cos(nOij ) - ~  F(rlj). S(rlj ) (6) 
ij ij 

FORMALISM 

We will calculate the intrachain angular correlation 
functions of the Hamiltonian (6) and argue that, as the 
temperature is lowered, these correlation functions will 
diverge for particular helical conformations of the chains. 
This then means that at these lower temperatures the 
chains have the conformation of these helices. 

The correlation function (S~(rij)S~(rl,y)) (p, v = x, y) is 
related to the susceptibility XZ~(rii, ri,j,) by: 

zUV(rij, ri,y) = f l<Su(rij)Sv(ri, j ,))  - fl(Su(rq))(S~(rrj,)) (7) 

where angular brackets denote a thermal average. The 
susceptibility can, by the fluctuation-dissipation theo- 
rem, be related to the linear response of (S~(rij)) to an 
applied field F(rlj). Under the assumption that the 
interchain coupling ,/1 is much smaller than the 
intrachain coupling JII, we can treat the chains as 
pseudo-one dimensional and calculate the susceptibility 
ZU~(q) in a scheme where the interchain couplings are 
treated in the mean-field approximation tS. In this 
approximation, the Hamiltonian is then written: 

H : --JII  2 c ° s ( O i , j  - -  O i - l . J  - -  0~) 
ij 

- J± ~ [cos Oij(cos Oij,) + sin 0iy(sin Oij,)] 
i 

( j j ' )  

+ 7 ~ cos(nOij) - ~ F(rij). S(rij) (8) 
ij ij 

Upon introducing the Fourier transform of the mean 
fields: 

Sx(q)= lN ~ (Cos Oij,) e-iqr'J' (9) 

1 
Sy(q) = ~ ~ <sin Oij, > e - iq ' r i j '  (10) 

ij" 

and of the applied field: 

1 ~ F(rij) e -iqr'~ (11) F ( q )  = 

where N is the number of monomers, the mean-field 
Hamiltonian becomes: 

H = - - J l l  2 c ° s ( O i j  - -  O i - l , J  - -  ~)  "~ 7 2 c°s(g lOi j )  
ij ij 

-- ~ J±(q±) eiqr'JS(rij) • S(q) - ~ F(q). S(r~j) c iq'r'j 
q,ij q.ij (12) 
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with 

d±(q±) = J±(q~,, qy) = J± ~, e ' ( ' ' ; - ' ' j )  (13) 
1, 

with j '  nearest neighbours to j. This shows that S(r~j) is. 
subjected to an effective external field h(r~j) given by: 

h(r,~) = ~ h(q) e 'q~'J = ~e'q~'[F(q) - J±(q_0S(q)](14) 
q q 

For a single chain, S,,(q~) and Sr(q~) are related to the 
external field by the single-chain susceptibility Zf)~(qz), so 
that 

S,(q~) = ~ ~)~(q~)h~(q~) (15) 
v 

Thus, by combining equations (14) and (15) we obtain 
for the array of chains: 

S~(q)[5,~- J±(qz)Z~)*(q2)] = ~ F~(q)z~'(q~) (16) 
v y 

The susceptibilities ff~(q) are then related to those of a 
single chain, Zf)~(q~), by: 

ff~(q) = ~ {[1 - J.(q±)Zo(q~)]- z}uu.Z{~(q=) (17) 
/~' 

At certain temperatures and wave vectors, we will find 
that the matrix [1-J±(q±)Zo(qz)] becomes non- 
invertible, which we will interpret as a spontaneous 
ordering of the chains into the structures given by these 
wave vectors. This leads to the determinant equation: 

J~_(q±)z~(qz)- 1 J±(q±)z~Y(q~) 1 = 0 (18) 
J±(q±)ffoX(q~) J±(q±)ffoY(qz) -- 

The largest temperature at which solutions to this 
equation exist is then the physically relevant transition 
temperature. 

We are then left with the task of calculating the 
single-chain susceptibility. This is most easily done in a 
transfer-integral formalism~ 6. The transfer-integral equa- 
tion for a single chain is: 

f " dOi = 2kqJk(0i - 1) eOSll COS(Oi--Oi-1 ~ m ~  C O S ~  ~ 
1 )lLiJk ( 0 i )  

- $ t  

(19) 

Here ~k(0) and 2k are the right eigenfunctions and 
the corresponding eigenvalues of the transfer-integral 
operator. It is easy to show that the left eigenfunctions 
Ok(0) are related to ugk(0) by: 

Ok(0) = ~k( - 0) e ~ ~o~(.0) (20) 

With the shorthand notation Su(1)= S~,(O~) and with 
the appropriate normalization of the eigenfunctions Ok 
and qJk the correlation function can be expressed in terms 
of these eigenfunctions as: 

< S.(l)Sv(l') > = ~ < OolS,,(l)lq'D < %lS~(l')lq'O>(;~d 2o) v-rl  
k 

(21) 

where 

f 
~ 

<OklflVk'> = dOOk(O)Wk,(O)f(O) (22) 
--I t  

and 20 is the eigenvalue of largest magnitude. 
The n-fold symmetry of the crystal-field term causes 

the solutions of equation (19) to be in the form of Bloch 

functions, namely: 

I{Jk(O ) -~- exp(ipO)uk(O) (23) 

with p an integer and UR(O) a periodic function of period 
2n/n. The eigenvalues 2k, which are in general complex, 
then occur in bands, and can be written as 2m,p with m 
a non-negative integer representing the band index and 
p an integer with - n / 2  < p < n/2. The matrix elements 
appearing in equation (21) are then of the form: 

f ~ dOOm,p(O)Vm,,p,(O)f(O ) (24) 

with f(O)= cos 0 or sin 0, and these will vanish unless 
p ' =  p + 1. Equation (21) then reduces to: 

< S~,(I)S,(I') > = ~ < qJo,olSAl)lqJm, + - 1 ><(I)m,+ llSv(/')lq%,o> 
m 

x [2,,,+ 1/2o,o] Is-rl (25) 

Provided the temperature is not so high that ksT is 
comparable to JII it will be true that only the closest 
excited states coupled by S~(1) to the ground state q%,o 
need be included in the sum. In the region of parameters 
considered here, where y >> JII, each band m with its n 
eigenvalues 2,,,p will be separated from the other bands 
by a gap of order ear/(2flyn2) 1/z. In this region, we then 
need to retain only the term with m = 0 in equation (25). 
With this simplification we have: 

Z~)x(/, l') = Z~)r(I, l') 

fl F()~0,1~[/-I'1 ()~0, _ i'~ l/-/'l ] 
= 4 Lk;to,o/ + \ %,o / 

Z~)'(I, l') : -- Z~X(l, l') 

] 
4i L\2o,o/ \ %,o / d 

Putting 

we find 

(26) 

(27) 

F = 2o,1/2o,o (28) 

fl [ 1--- F2- -1 (29) 
Z~(q~) = 2 "~ -1 + F 2 - 2F cos q~a_J 

ifl [ 2F sin qza 1 = J (30) 
1 + F 2 - 2F cos q~aA 

where ~ and J indicate real and imaginary parts, 
respectively, and F is assumed to be complex. 
Substitution in equation (18) yields the result that the 
susceptibility diverges when: 

#Slk 1 - F 2 
F 2 - 2 F -  cos q~a) + ~ ( 1  2F sin q=a + - + ~ - - 2 F c o s q = a /  

2 
- (31) 

flJ±(qi) 

This expression is the central result of the analysis. 

APPLICATION TO HELICAL POLYMERS 

In order to determine whether an assembly of helical 
chains will order into a commensurate or incommen- 
surate structure we look for the wavenumber at which 
equation (31) first has a solution as the temperature is 
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lowered. This is equivalent to seeking the value of qz at 
which the left-hand side of equation (3 I) has a maximum 
value of 2/flJ~.(q±). In those cases where F is real, it is 
clear by inspection that the second term on the left-hand 
side of equation (31) vanishes, and that the maximum 
can only occur when qza = 0 or qza = n. The existence of 
incommensurate phases thus requires that F be complex. 

The simplest case to be studied is that in which the 
chain is in an environment having only two-fold 
symmetry. In an orthorhombic crystal, for example, we 
must put n = 2 in the Hamiltonian (8). There are then 
only two eigenvalues in the principal band of solutions 
to equation (19), and F will be real. When ~ is closer to 
7r than to 0, as is the case in PTFE,  the eigenvalue 20,1 
will be negative. This causes F to be negative, and the 
maximum of X~ x to occur at q= = zt/a. 

If, on the other hand, the chain is in an environment 
of higher symmetry, then the situation is considerably 
more complicated. In an interchain field of six-fold 
symmetry, as is characteristic of the low-pressure phases 
of PTFE,  we put n = 6 in equation (8). The eigenvalues 
2o,1 and 2o,-1 of equation (19) are then complex and 
distinct. We simplify the expression for the susceptibility 
by writing: 

F = IFI e i~ (32)  

and find equation (31) to reduce to: 

1 - [ F r  2 

1 + IF[ 2 - 2IF[ cos(q=a - 4)) 
m 

~J±(q±) 
(33) 

As the temperature is lowered, this equation will first be 
satisfied at the wavenumber at which q=a = ~b. The 
question of commensurability of the highest-temperature 
cooperative phase is thus decided by the phase q~ of the 
eigenvalue 2o,1. From the structure of equation (19) we 
can determine that when ~ = 27rm/n, with m an integer, 
then the phase of the eigenvalue will be such that q~ = ~; 
that is, we have the not unexpected result that a 
commensurate phase is formed whose pitch is equal to 
the pitch of an isolated helix. For values of c~ differing 
from 2rein~n, however, there is no reason to have ~b equal 
to ~, and numerical studies show the type of 
behaviour illustrated schematically in Fioure 3. The 
general result, then, is that an incommensurate phase 
will first be formed on cooling for almost all values of~. 

This is analogous to the behaviour of the anisotropic 

I I I 

Figure 3 The value of the phase ~b is periodic with perio d 2~z/n. Only 
at values ct = rcm/n are q5 and ct equal 

next-nearest neighbour Ising (ANNNI) model, which has 
been used successfully 12 to explain the phase diagrams 
of magnetic materials such as CeSb. This model has spin 
chains with competing nearest neighbour and next- 
nearest neighbour interactions along the chain axis and 
with a ferromagnetic coupling in the plane perpendicular 
to the chain axis. The transfer-integral equation for the 
individual chains can be solved exactly 17 with the result 
that the largest eigenvalue 20 is real and the two 
eigenvalues closest to 2o are in general complex 
conjugates with arguments that vary continuously with 
temperature. The single-chain correlation function thus 
oscillates in space with a period which varies 
continuously with temperature. When the interactions in 
the plane perpendicular to the chain axes are included, 
it is found even in the simplest mean-field approxima- 
tion 12 that the system undergoes a series of phase 
transitions as the temperature is lowered. The high 
temperature phase is disordered, and upon lowering the 
temperature, the system undergoes a transition to an 
initial ordered incommensurate phase. However, as the 
temperature is reduced further, the intrachain correla- 
tions do not change continuously with temperature, in 
contrast to the case for the single chain. The effect of the 
interchain interactions is to make commensurate phases 
energetically favourable, and the system undergoes first 
a transition to an incommensurate phase and then a 
series of transitions between different commensurate 
phases as the temperature is reduced. The smooth 
variation with temperature of the single-chain magnetic 
structure is thus replaced by a step-like variation, which 
has been given the name 'Devil's staircase'. 

On the basis of this analogy, we can then speculate 
that chiral helical polymers and liquid crystals may 
exhibit similar phase diagrams with an initial incom- 
mensurate ordered phase followed by several commen- 
surate phases. This opens up the possibility of interesting 
applications. Chiral helical molecules have been shown 
to be optically active as a consequence of their helical 
asymmetry, with optical properties depending on the 
helical pitch is. These properties may thus be changed 
with temperature if the conformation of the helices 
undergoes a series of transitions. Furthermore, it may be 
possible in some cases to change the effective symmetry 
of the environment of a single chain to a two-fold 
symmetry by the application of a uniaxial stress or 
external fields. In this case, the molecules may undergo 
a transition to planar conformations over a range of 
temperatures, which implies a drastic change in the 
optical properties of the system. 

Finally, we remark that the model we have studied 
has involved a helical chain in an environment of a given 
symmetry. In the example of PTFE,  we discussed 
two-fold and six-fold symmetries corresponding to 
orthorhombic and hexagonal packing. Because a 
hexagonal lattice subject to uniaxial stress becomes 
orthorhombic, we need to ask how the transition from 
six-fold to two-fold symmetry will affect the pitch of the 
helices. 

The answer to this question lies in the applicability of 
the single-band approximation made in moving from 
equation (25) to equation (26). As a hexagonal lattice is 
uniaxially distorted towards an orthorhombic structure, 
the phase ~ of the complex eigenvalue 20,1 is reduced, 
until at some finite distortion 2o,1 becomes real. At this 
point the two real eigenvalues 2o, o and 2o.1 can be 
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thought of as forming the two-component band of the 
orthorhombic structure. A gradual increase in the 
uniaxial strain thus causes a continuous change of pitch 
of the helix. However, a gradual increase in uniaxial stress 
will not necessarily cause continuous change, since the 
stability of the distorted hexagonal system is dependent 
on the free energy being a minimum in that state. A 
complete argument for a particular symmetry to be 
preferred must include such considerations. In the present 
paper we have merely shown the connection between 
higher symmetry in the interchain potential and possible 
incommensurate phases at elevated temperatures. 
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